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Introduction

All spaces are assumed to be separable and metrizable. A topological
space is zero-dimensional if it has a base consisting of clopen sets.

Theorem (Hurewicz-Tumarkin, 1925)

Let n be a non-negative integer. A separable metric space X is
n-dimensional if, and only if, it is the union of n+ 1 but not fewer
zero-dimensional subsets.

Definition (Hurewicz, 1928)

A separable metric space is countable dimensional if, and only if, it is a
countable union of zero-dimensional sets.

Problem (Aleksandroff, 1947)

Is countable dimensional equivalent to weakly - infinite dimensional?
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Selective Screenability Property

A family A of sets refines a family B of sets if there is for each
A€ A aset Be Bsuchthat AC B.

Let A and B be collections of families of subsets of a set S. The
symbol Sc(A, B) denotes the selection principle:

For each sequence (U, : n < w) of elements of A there is
a sequence (V, : n < w) such that:

@ For each n, V, refines U,;
@ For each n, V, is a disjoint collection of sets;
Q@ U{Vn:n<w}isan element of B.

The property S.(O, O) of a topological space is called selective
screenability of the space. The property S¢(O,, Q) is the Aleksandroff
notion of weakly - infinite dimensional topological space.



Aleksandroff’s Problem

Theorem (R. Pol, 1981)

There is a separable metric space which is weakly infinite
dimensional, but not countable dimensional.
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Defining Infinite Dimension Function

Define an infinite dimension function such that it assigns
@ the correct dimension in the finite case.
@ w to Hurewicz's countable dimensional spaces.
@ w; to spaces that are not S.(O, O).
Q dim(A) < dim(B) whenever A C B.
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Selective Screenability Game

For ordinal o > 0 the game G%(.A, B) is defined as follows:
In each inning v < a ONE first selects an A, from A, to which
TWO responds with a B, which is a family of sets refining the
family A,.
A play

Ao, Bo, -+, Ay By, - Y < a

is won by TWO if [J{B, : v < a} € B; otherwise, ONE wins.
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Define for a space S an ordinal tp-(O, O)(S) as

min{a > 0 : TWO has a winning strategy in the game GZ(O, O) on S}

Define for a spacet S the game dimension of S, dimg,(S), by

1+ dimg,(S) = tpe(0, O)(S)

Note: The game dimension of Pol's counterexample to the
Aleksandroff problem is w + 1.
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Neighborhood Game Dimension

Theorem (Banach-Mazur, 1932)

Every separable metric space embeds isometrically into the
topological group (C[0, 1], +, || - || max)

For topological group (H,*) with identity element e and a
neighborhood U of e, O(U) = {x* U : x € H} is an open cover
of H. Define

Onpg = {O(U) : U a neighborhood of e}
For a subset S C H, define an ordinal tpc(Oppd, Os)(H) as
min{ca > 0 : TWO has a winning strategy in the game G2(Oppd, Os)}
Define neighborhood game dimension of subset S, dim,pq(S), by

1+ dimupa(S) = tpe(Onba, Os)(H)
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A collection A of subsets of a topological space (X, 1) is discrete if
there is for each x € X a neighborhood U of x such that
HAe A: ANU#0} <1.

Let A and B be collections of families of subsets of a set S. The
symbol S4(.A, B) denotes the selection principle:

For each sequence (U, : n < w) of elements of A there is
a sequence (V, : n < w) such that:

@ For each n, V, refines U,;

@ For each n, V, is a discrete collection of sets;

Q@ U{V»: n<w} is an element of B.

The property S4(O, O) of a topological space is called selective
strong screenability of the space.
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Selective Strong Screenability and Paracompacteness

A topological space is paracompact if for each given open cover
there is a locally finite open cover refining the given cover.

Theorem (Michael, 1953)

A regular space is paracompact if, and only if, it is strongly
screenable.

Theorem (Nagami, 1955)

A normal, countably paracompact space is screenable if, and only
if, it is strongly screenable.
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Selective Strong Screenability Game

For an ordinal o > 0 the game G$(A, B) is defined as follows: In
each inning v < a ONE first selects an A, from A, to which TWO
responds with a B, which is a discrete family of sets refining the
family A,. A play

A07 BO7"'7A’77 B’yv"' T<ao

is won by TWO if |J{B, : v < a} € B; otherwise, ONE wins.
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If ONE has a winning strategy in G2(A, B), then ONE has a
winning strategy in G5 (A, B).
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Theorem

Let X be a metrizable space and let Y be a subspace of X. If
TWO has a winning strategy in the game G4(O,Oy) on X, then
Y is a subset of a union of countably many closed, strongly
zero-dimensional subsets of X.

Corollary

| \

If X is a metrizable space, then the following are equivalent:
@ TWO has a winning strategy in G5(O, ).
@ TWO has a winning strategy in G5(O, 0).
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The game G4(O, O) for [0, 1]

TWO has a winning strategy in G‘j“((’), O) on the closed unit
interval.

Conjecture

| \

For each positive integer n ONE has a winning strategy in
G41(0,0), and TWO has a winning strategy in G5 (0, ©) on
[0, 1]".
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Gy(O, ) and Possible Game Dimension

Define for a subset S an ordinal tps(O, O)(S) as

min{a > 0 : TWO has a winning strategy in the game G%(O, O) on S}

Define for a subset S the strong dimension of S, dimg,(S), by

w - dimg,(S) + 1 = tpa(O, 0)(S)

How does dimg,(S) behave compared to dim¢ (S)?







Thank you!



