The Selective Strong Screenability Game

Liljana Babinkostova* and Marion Scheepers Boise State University

2017 Frontiers of Selection Principles Cardinal Stefan Wyszyński University, Poland

Introduction

Introduction

All spaces are assumed to be separable and metrizable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Hurewicz-Tumarkin, 1925)

Let n be a non-negative integer. A separable metric space X is n-dimensional if, and only if, it is the union of n + 1 but not fewer zero-dimensional subsets.

Theorem (Hurewicz-Tumarkin, 1925)

Let n be a non-negative integer. A separable metric space X is n-dimensional if, and only if, it is the union of n + 1 but not fewer zero-dimensional subsets.

Definition (Hurewicz, 1928)

A separable metric space is *countable dimensional* if, and only if, it is a countable union of zero-dimensional sets.

Theorem (Hurewicz-Tumarkin, 1925)

Let n be a non-negative integer. A separable metric space X is n-dimensional if, and only if, it is the union of n + 1 but not fewer zero-dimensional subsets.

Definition (Hurewicz, 1928)

A separable metric space is *countable dimensional* if, and only if, it is a countable union of zero-dimensional sets.

Problem (Aleksandroff, 1947)

Is countable dimensional equivalent to weakly - infinite dimensional?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let \mathcal{A} and \mathcal{B} be collections of families of subsets of a set S. The symbol $S_c(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(U_n : n < \omega)$ of elements of A there is a sequence $(V_n : n < \omega)$ such that:

• For each n, \mathcal{V}_n refines \mathcal{U}_n ;

2 For each n, V_n is a disjoint collection of sets;

Let \mathcal{A} and \mathcal{B} be collections of families of subsets of a set S. The symbol $S_c(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(\mathcal{U}_n : n < \omega)$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n < \omega)$ such that:

• For each n, \mathcal{V}_n refines \mathcal{U}_n ;

- **2** For each n, V_n is a disjoint collection of sets;
- $\bigcirc \bigcup \{\mathcal{V}_n : n < \omega\} \text{ is an element of } \mathcal{B}.$

The property $S_c(\mathcal{O}, \mathcal{O})$ of a topological space is called *selective screenability* of the space.

Let \mathcal{A} and \mathcal{B} be collections of families of subsets of a set S. The symbol $S_c(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(\mathcal{U}_n : n < \omega)$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n < \omega)$ such that:

1 For each n, \mathcal{V}_n refines \mathcal{U}_n ;

- **2** For each n, V_n is a disjoint collection of sets;
- $\bigcirc \bigcup \{\mathcal{V}_n : n < \omega\} \text{ is an element of } \mathcal{B}.$

The property $S_c(\mathcal{O}, \mathcal{O})$ of a topological space is called *selective* screenability of the space. The property $S_c(\mathcal{O}_2, \mathcal{O})$ is the Aleksandroff notion of *weakly - infinite dimensional* topological space.

Theorem (R. Pol, 1981)

There is a separable metric space which is weakly infinite dimensional, but not countable dimensional.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Define an infinite dimension function such that it assigns the correct dimension in the finite case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- the correct dimension in the finite case.
- 2 ω to Hurewicz's countable dimensional spaces.

- the correct dimension in the finite case.
- 2 ω to Hurewicz's countable dimensional spaces.
- ω_1 to spaces that are not $S_c(\mathcal{O}, \mathcal{O})$.

- the correct dimension in the finite case.
- 2 ω to Hurewicz's countable dimensional spaces.
- ω_1 to spaces that are not $S_c(\mathcal{O}, \mathcal{O})$.
- $dim(A) \leq dim(B)$ whenever $A \subseteq B$.

For ordinal $\alpha > 0$ the game $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$ is defined as follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For ordinal $\alpha > 0$ the game $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$ is defined as follows: In each inning $\gamma < \alpha$ ONE first selects an A_{γ} from \mathcal{A} , to which TWO responds with a B_{γ} which is a family of sets refining the family A_{γ} .

For ordinal $\alpha > 0$ the game $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$ is defined as follows: In each inning $\gamma < \alpha$ ONE first selects an A_{γ} from \mathcal{A} , to which TWO responds with a B_{γ} which is a family of sets refining the family A_{γ} .

A play

$$A_0, B_0, \cdots, A_{\gamma}, B_{\gamma}, \cdots, \gamma < \alpha$$

is won by TWO if $\bigcup \{B_{\gamma} : \gamma < \alpha\} \in \mathcal{B}$; otherwise, ONE wins.

Define for a space S an ordinal $tp_c(\mathcal{O}, \mathcal{O})(S)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{c}(\mathcal{O}, \mathcal{O}) \text{ on } S\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define for a space S an ordinal $tp_c(\mathcal{O}, \mathcal{O})(S)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{c}(\mathcal{O}, \mathcal{O}) \text{ on } S\}$

Define for a spacet S the game dimension of S, $\dim_{G_c}(S)$, by

$$1 + \dim_{G_c}(S) = tp_c(\mathcal{O}, \mathcal{O})(S)$$

Define for a space S an ordinal $tp_c(\mathcal{O}, \mathcal{O})(S)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{c}(\mathcal{O}, \mathcal{O}) \text{ on } S\}$

Define for a spacet S the game dimension of S, $\dim_{G_c}(S)$, by

$$1 + \dim_{G_c}(S) = tp_c(\mathcal{O}, \mathcal{O})(S)$$

Note: The game dimension of Pol's counterexample to the Aleksandroff problem is $\omega + 1$.

Every separable metric space embeds isometrically into the topological group (C[0,1],+, $||\cdot||_{max}$)

For topological group (H, *) with identity element e and a neighborhood U of e, $O(U) = \{x * U : x \in H\}$ is an open cover of H.

Every separable metric space embeds isometrically into the topological group (C[0,1],+, $||\cdot||_{max}$)

For topological group (H, *) with identity element e and a neighborhood U of e, $O(U) = \{x * U : x \in H\}$ is an open cover of H. Define

 $\mathcal{O}_{nbd} = \{ O(U) : U \text{ a neighborhood of } e \}$

Every separable metric space embeds isometrically into the topological group (C[0,1],+, $||\cdot||_{max}$)

For topological group (H, *) with identity element e and a neighborhood U of e, $O(U) = \{x * U : x \in H\}$ is an open cover of H. Define

 $\mathcal{O}_{nbd} = \{ O(U) : U \text{ a neighborhood of } e \}$

For a subset $S \subseteq H$, define an ordinal $tp_c(\mathcal{O}_{nbd}, \mathcal{O}_S)(H)$ as

 $\min\{\alpha > 0 : \text{TWO has a winning strategy in the game } G^{\alpha}_{c}(\mathcal{O}_{nbd}, \mathcal{O}_{S})\}$

Every separable metric space embeds isometrically into the topological group (C[0,1],+, $||\cdot||_{max}$)

For topological group (H, *) with identity element e and a neighborhood U of e, $O(U) = \{x * U : x \in H\}$ is an open cover of H. Define

 $\mathcal{O}_{nbd} = \{ O(U) : U \text{ a neighborhood of } e \}$

For a subset $S \subseteq H$, define an ordinal $tp_c(\mathcal{O}_{nbd}, \mathcal{O}_S)(H)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{c}(\mathcal{O}_{\textit{nbd}}, \mathcal{O}_{S})\}$

Define *neighborhood game dimension* of subset S, $dim_{nbd}(S)$, by

$$1 + dim_{nbd}(S) = tp_c(\mathcal{O}_{nbd}, \mathcal{O}_S)(H)$$

A collection \mathcal{A} of subsets of a topological space (X, τ) is *discrete* if there is for each $x \in X$ a neighborhood U of x such that $|\{A \in \mathcal{A} : A \cap U \neq \emptyset\}| \le 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A collection \mathcal{A} of subsets of a topological space (X, τ) is *discrete* if there is for each $x \in X$ a neighborhood U of x such that $|\{A \in \mathcal{A} : A \cap U \neq \emptyset\}| \le 1.$

Let \mathcal{A} and \mathcal{B} be collections of families of subsets of a set S. The symbol $S_d(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(\mathcal{U}_n : n < \omega)$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n < \omega)$ such that:

• For each n, \mathcal{V}_n refines \mathcal{U}_n ;

2 For each n, V_n is a discrete collection of sets;

A collection \mathcal{A} of subsets of a topological space (X, τ) is *discrete* if there is for each $x \in X$ a neighborhood U of x such that $|\{A \in \mathcal{A} : A \cap U \neq \emptyset\}| \le 1.$

Let \mathcal{A} and \mathcal{B} be collections of families of subsets of a set S. The symbol $S_d(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(U_n : n < \omega)$ of elements of A there is a sequence $(V_n : n < \omega)$ such that:

- For each n, V_n refines U_n;
 For each n, V_n is a discrete collection of sets;
- $\bigcirc \bigcup \{\mathcal{V}_n : n < \omega\} \text{ is an element of } \mathcal{B}.$

The property $S_d(\mathcal{O}, \mathcal{O})$ of a topological space is called *selective* strong screenability of the space.

A topological space is *paracompact* if for each given open cover there is a locally finite open cover refining the given cover.

Theorem (Michael, 1953)

A regular space is paracompact if, and only if, it is strongly screenable.

A topological space is *paracompact* if for each given open cover there is a locally finite open cover refining the given cover.

Theorem (Michael, 1953)

A regular space is paracompact if, and only if, it is strongly screenable.

Theorem (Nagami, 1955)

A normal, countably paracompact space is screenable if, and only if, it is strongly screenable.

For an ordinal $\alpha > 0$ the game $G^{\alpha}_{d}(\mathcal{A}, \mathcal{B})$ is defined as follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For an ordinal $\alpha > 0$ the game $G_d^{\alpha}(\mathcal{A}, \mathcal{B})$ is defined as follows: In each inning $\gamma < \alpha$ ONE first selects an A_{γ} from \mathcal{A} , to which TWO responds with a B_{γ} which is a discrete family of sets refining the family A_{γ} . A play

$$A_0, B_0, \cdots, A_{\gamma}, B_{\gamma}, \cdots, \gamma < \alpha$$

(日) (同) (三) (三) (三) (○) (○)

is won by TWO if $\bigcup \{B_{\gamma} : \gamma < \alpha\} \in \mathcal{B}$; otherwise, ONE wins.

If TWO has a winning strategy in $G_d^{\alpha}(\mathcal{A}, \mathcal{B})$, then TWO has a winning strategy in $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$.

If TWO has a winning strategy in $G_d^{\alpha}(\mathcal{A}, \mathcal{B})$, then TWO has a winning strategy in $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$.

Lemma

If ONE has a winning strategy in $G_c^{\alpha}(\mathcal{A}, \mathcal{B})$, then ONE has a winning strategy in $G_d^{\alpha}(\mathcal{A}, \mathcal{B})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

For Lindelöf space X the following are equivalent:

- **1** X is zero-dimensional.
- **2** TWO has a winning strategy in $G^1_d(\mathcal{O}, \mathcal{O})$ on X.

For Lindelöf space X the following are equivalent:

- **1** X is zero-dimensional.
- **2** TWO has a winning strategy in $G^1_d(\mathcal{O}, \mathcal{O})$ on X.

Let X be a metrizable space and let Y be a subspace of X. If TWO has a winning strategy in the game $G_d^{\omega}(\mathcal{O}, \mathcal{O}_Y)$ on X, then Y is a subset of a union of countably many closed, strongly zero-dimensional subsets of X.

(日)、(四)、(E)、(E)、(E)

Let X be a metrizable space and let Y be a subspace of X. If TWO has a winning strategy in the game $G_d^{\omega}(\mathcal{O}, \mathcal{O}_Y)$ on X, then Y is a subset of a union of countably many closed, strongly zero-dimensional subsets of X.

Corollary

If X is a metrizable space, then the following are equivalent:

- TWO has a winning strategy in $G_d^{\omega}(\mathcal{O}, \mathcal{O})$.
- **2** TWO has a winning strategy in $G^1_d(\mathcal{O}, \mathcal{O})$.

TWO has a winning strategy in $G_d^{\omega+1}(\mathcal{O},\mathcal{O})$ on the closed unit interval.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TWO has a winning strategy in $G_d^{\omega+1}(\mathcal{O}, \mathcal{O})$ on the closed unit interval.

Conjecture

For each positive integer n ONE has a winning strategy in $G_d^{\omega \cdot n}(\mathcal{O}, \mathcal{O})$, and TWO has a winning strategy in $G_d^{\omega \cdot n+1}(\mathcal{O}, \mathcal{O})$ on $[0, 1]^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Define for a subset S an ordinal $tp_d(\mathcal{O}, \mathcal{O})(S)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{d}(\mathcal{O}, \mathcal{O}) \text{ on } S\}$

Define for a subset S an ordinal $tp_d(\mathcal{O}, \mathcal{O})(S)$ as

 $\min\{\alpha > 0 : \mathsf{TWO} \text{ has a winning strategy in the game } \mathsf{G}^{\alpha}_{d}(\mathcal{O}, \mathcal{O}) \text{ on } S\}$

Define for a subset S the strong dimension of S, $\dim_{G_d}(S)$, by

$$\omega \cdot \dim_{G_d}(S) + 1 = tp_d(\mathcal{O}, \mathcal{O})(S)$$

Question

How does $\dim_{G_d}(S)$ behave compared to $\dim_{G_c}(S)$?

HAPPY 60th BIRTHDAY!

イロト イポト イヨト イヨト

Thank you!