
The Selective Strong Screenability Game

Liljana Babinkostova∗ and Marion Scheepers
Boise State University

2017 Frontiers of Selection Principles
Cardinal Stefan Wyszyński University, Poland



Introduction

All spaces are assumed to be separable and metrizable. A topological
space is zero-dimensional if it has a base consisting of clopen sets.

Theorem (Hurewicz-Tumarkin, 1925)

Let n be a non-negative integer. A separable metric space X is
n-dimensional if, and only if, it is the union of n + 1 but not fewer
zero-dimensional subsets.

Definition (Hurewicz, 1928)

A separable metric space is countable dimensional if, and only if, it is a
countable union of zero-dimensional sets.

Problem (Aleksandroff, 1947)

Is countable dimensional equivalent to weakly - infinite dimensional?
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Selective Screenability Property

A family A of sets refines a family B of sets if there is for each
A ∈ A a set B ∈ B such that A ⊆ B.

Let A and B be collections of families of subsets of a set S . The
symbol Sc(A,B) denotes the selection principle:

For each sequence (Un : n < ω) of elements of A there is
a sequence (Vn : n < ω) such that:

1 For each n, Vn refines Un;

2 For each n, Vn is a disjoint collection of sets;
3

⋃
{Vn : n < ω} is an element of B.

The property Sc(O,O) of a topological space is called selective
screenability of the space. The property Sc(O2,O) is the Aleksandroff
notion of weakly - infinite dimensional topological space.
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Aleksandroff’s Problem

Theorem (R. Pol, 1981)

There is a separable metric space which is weakly infinite
dimensional, but not countable dimensional.



Defining Infinite Dimension Function

Define an infinite dimension function such that it assigns

1 the correct dimension in the finite case.

2 ω to Hurewicz’s countable dimensional spaces.

3 ω1 to spaces that are not Sc(O,O).

4 dim(A) ≤ dim(B) whenever A ⊆ B.
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Selective Screenability Game

For ordinal α > 0 the game Gαc (A,B) is defined as follows:

In each inning γ < α ONE first selects an Aγ from A, to which
TWO responds with a Bγ which is a family of sets refining the
family Aγ .
A play

A0, B0, · · · , Aγ , Bγ , · · · γ < α

is won by TWO if
⋃
{Bγ : γ < α} ∈ B; otherwise, ONE wins.
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Game Dimension

Define for a space S an ordinal tpc(O,O)(S) as

min{α > 0 : TWO has a winning strategy in the game Gαc (O,O) on S}

Define for a spacet S the game dimension of S , dimGc (S), by

1 + dimGc (S) = tpc(O,O)(S)

Note: The game dimension of Pol’s counterexample to the
Aleksandroff problem is ω + 1.



Game Dimension

Define for a space S an ordinal tpc(O,O)(S) as

min{α > 0 : TWO has a winning strategy in the game Gαc (O,O) on S}

Define for a spacet S the game dimension of S , dimGc (S), by

1 + dimGc (S) = tpc(O,O)(S)

Note: The game dimension of Pol’s counterexample to the
Aleksandroff problem is ω + 1.



Game Dimension

Define for a space S an ordinal tpc(O,O)(S) as

min{α > 0 : TWO has a winning strategy in the game Gαc (O,O) on S}

Define for a spacet S the game dimension of S , dimGc (S), by

1 + dimGc (S) = tpc(O,O)(S)

Note: The game dimension of Pol’s counterexample to the
Aleksandroff problem is ω + 1.



Neighborhood Game Dimension

Theorem (Banach-Mazur, 1932)

Every separable metric space embeds isometrically into the
topological group (C [0, 1],+, || · ||max)

For topological group (H, ∗) with identity element e and a
neighborhood U of e, O(U) = {x ∗ U : x ∈ H} is an open cover
of H.

Define

Onbd = {O(U) : U a neighborhood of e}

For a subset S ⊆ H, define an ordinal tpc(Onbd ,OS)(H) as

min{α > 0 : TWO has a winning strategy in the game Gαc (Onbd ,OS)}

Define neighborhood game dimension of subset S , dimnbd(S), by

1 + dimnbd(S) = tpc(Onbd ,OS)(H)
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Selective Strong Screenability Property

A collection A of subsets of a topological space (X , τ) is discrete if
there is for each x ∈ X a neighborhood U of x such that
|{A ∈ A : A ∩ U 6= ∅}| ≤ 1.

Let A and B be collections of families of subsets of a set S . The
symbol Sd(A,B) denotes the selection principle:
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⋃
{Vn : n < ω} is an element of B.

The property Sd(O,O) of a topological space is called selective
strong screenability of the space.
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Selective Strong Screenability and Paracompacteness

A topological space is paracompact if for each given open cover
there is a locally finite open cover refining the given cover.

Theorem (Michael, 1953)

A regular space is paracompact if, and only if, it is strongly
screenable.

Theorem (Nagami, 1955)

A normal, countably paracompact space is screenable if, and only
if, it is strongly screenable.
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2 TWO has a winning strategy in G1
d(O,O) on X .
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The Game Gω
d (O,O)

Theorem

Let X be a metrizable space and let Y be a subspace of X . If
TWO has a winning strategy in the game Gωd (O,OY ) on X , then
Y is a subset of a union of countably many closed, strongly
zero-dimensional subsets of X .

Corollary

If X is a metrizable space, then the following are equivalent:

1 TWO has a winning strategy in Gωd (O,O).

2 TWO has a winning strategy in G1
d(O,O).
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The game Gα
d (O,O) for [0, 1]

Theorem

TWO has a winning strategy in Gω+1
d (O,O) on the closed unit

interval.

Conjecture

For each positive integer n ONE has a winning strategy in
Gω·nd (O,O), and TWO has a winning strategy in Gω·n+1

d (O,O) on
[0, 1]n.
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Gα
d (O,O) and Possible Game Dimension

Define for a subset S an ordinal tpd(O,O)(S) as

min{α > 0 : TWO has a winning strategy in the game Gαd (O,O) on S}

Define for a subset S the strong dimension of S , dimGd
(S), by

ω · dimGd
(S) + 1 = tpd(O,O)(S)

Question

How does dimGd
(S) behave compared to dimGc (S)?
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