Compactifiable classes of compacta

drekin@gmail.com

Adam Bartoš¹ Jozef Bobok² Pavel Pyrih¹ Benjamin Vejnar¹

> ¹Faculty of Mathematics and Physics Charles University

²Department of Mathematics Czech Technical University in Prague

Frontiers of Selection Principles Warsaw, Aug 20-Sep 1 2017

Our questions

We say that classes of topological spaces \mathcal{C} , \mathcal{D} are equivalent if every member of \mathcal{C} is homeomorphic to a member of \mathcal{D} and vice versa. We write $\mathcal{C} \cong \mathcal{D}$.

Let ${\mathcal C}$ be a class of metrizable compacta.

Question

Can $\mathcal C$ be disjointly composed into one metrizable compactum such that the quotient space is also a metrizable compactum?

If $\mathcal C$ is a class of continua, then the question is equivalent to the following.

Question

Is there a metrizable compactum such that its set of connected components is equivalent to \mathcal{C} ?

Compositions

Formally, a composition ${\mathcal A}$ consists of the following data:

$$\{A_b\}_{b\in B} \xrightarrow{\{e_b\}_{b\in B}} A \xrightarrow{q_A} B$$

- A, B are topological spaces,
- the maps $\{e_b\}_{b\in B}$ are embeddings such that $\{\operatorname{rng}(e_b)\}_{b\in B}$ is a decomposition of A,
- the map q_A defined by $q_A^{-1}(b) = \operatorname{rng}(e_b)$ is continuous.

We write $A = (A, e_b)_{b \in B}$ or $(A, A_b)_{b \in B}$ when $A_b \subseteq A$.

Rectangular compositions

Let A, B be topological spaces, let $F \subseteq A \times B$.

- We put $F^b := \{a \in A : (a, b) \in F\}$ for every $b \in B$.
- F induces the composition $\mathcal{A}_F := (F, e_b)_{b \in B}$ where $e_b \colon F^b \to F^b \times \{b\}$, so $q_{\mathcal{A}_F} = \pi_B \upharpoonright F$.
- Compositions of this form are called rectangular compositions.

Every composition is equivalent to a rectangular composition.

- For $A = (A, A_b)_{b \in B}$ it is enough to put $F := \{(a, q_A(a)) : a \in A\} \subseteq A \times B$.
- We have $F^b = A_b$ for every $b \in B$.
- F is the graph of q_A , which is closed.

Compactifiable and Polishable classes

Definition

A composition $\mathcal{A} = (A, A_b)_{b \in B}$ is called

- compact if A, B are metrizable compacta,
- Polish if A, B are Polish spaces.

Definition

A class of topological spaces $\mathcal C$ is compactifiable (or Polishable) if there exists a compact (or Polish) composition $(A,A_b)_{b\in B}$ such that $\{A_b:b\in B\}\cong \mathcal C$.

Equivalences

$\mathsf{Theorem}$

The following conditions are equivalent for a class $\ensuremath{\mathcal{C}}$ of topological spaces.

- **1** There is a compact (or Polish) composition $(A, A_b)_{b \in B}$ such that $\{A_b : b \in B\}$ ≅ C.
- 2 There are metrizable compacta (or Polish spaces) A and B and a continuous map $q: A \to B$ such that $\{q^{-1}(b): b \in B\} \cong C$.
- 3 There are metrizable compacta (or Polish spaces) A and B and a closed (or G_{δ}) set $F \subseteq A \times B$ such that $\{F^b \colon b \in B\} \cong \mathcal{C}$.
- 4 There is a closed (or G_{δ}) set $F \subseteq [0,1]^{\omega} \times 2^{\omega}$ (or $\times \omega^{\omega}$) such that $\{F^b : b \in 2^{\omega} \text{ (or } \omega^{\omega})\} \cong \mathcal{C}$.

Observations

 Compactifiable and Polishable classes are stable under countable unions – consider the one-point compactification of

$$\sum_{i \in I} q_i \colon \sum_{i \in I} A_i \to \sum_{i \in I} B_i.$$

- Hence, every countable family of metrizable compacta (or Polish spaces) is compactifiable (or Polishable).
- On the other hand, a cardinal argument gives that there are many classes of metrizable compacta that are not Polishable.
 - There are c-many G_δ subsets of $[0,1]^\omega \times \omega^\omega$.
 - There are c-many non-homeomorphic metrizable compacta, and so 2^c-many non-equivalent classes.

Hyperspaces

For a topological space X we shall consider the hyperspaces of all subsets $\mathcal{P}(X)$, all closed subsets $\mathcal{C}I(X)$, all compact subsets $\mathcal{K}(X)$, and all subcontinua $\mathcal{C}(X)$ endowed with the Vietoris topology.

Recall

■ The Vietoris topology is generated by the sets

$$U^-=\{A\subseteq X:A\cap U\neq\emptyset\} \text{ and } U^+=\{A\subseteq X:A\subseteq U\}$$
 for open $U\subseteq X$.

• $\mathcal{K}(X)$ is metrizable by the Hausdorff metric

$$d_H(A, B) = \max(\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)).$$

if X is metrizable by a metric d.

- $\mathcal{K}(X)$ is compact (or Polish) if X is compact (or Polish).
- C(X) is closed in K(X) if X is Hausdorff.
- $\mathcal{R}_{\in} = \{(x, A) : x \in A \in \mathcal{C}I(X)\}$ is closed if X is regular.

Compositions and hyperspaces

Definition

A composition $\mathcal{A}=(A,A_b)_{b\in B}$ is strong if $q_{\mathcal{A}}$ is closed and open and $|B\setminus \operatorname{rng}(q_{\mathcal{A}})|\leq 1$. We also define strongly compactifiable and strongly Polishable classes.

Construction

- If X is metrizable and $\mathcal{F} \subseteq \mathcal{K}(X)$, then $\mathcal{A}_{\mathcal{F}}$ is strong.
- A composition \mathcal{A} is strong if and only if $\mathcal{F}_{\mathcal{A}} \cong \mathcal{B}$ via $q_{\mathcal{A}}^{-1*}$.

Compositions and hyperspaces

Theorem

The following conditions are equivalent for a class of compacta \mathcal{C} .

- $oldsymbol{\mathbb{L}}$ constrained is strongly Polishable).
- **2** There is a metrizable compactum (or a Polish space) A and a closed (or G_{δ}) family $\mathcal{F} \subseteq \mathcal{K}(A)$ such that $\mathcal{F} \cong \mathcal{C}$.
- In There is a closed (or G_δ) family $\mathcal{F} \subseteq \mathcal{K}([0,1]^\omega)$ such that $\mathcal{F} \cong \mathcal{C}$.

Proposition

Let $A = (A, A_b)_{b \in B}$ be a Polish composition of compacta.

- If q_A is closed, then $\mathcal{F}_A \subseteq \mathcal{K}(A)$ is G_δ .
- Every compactifiable class is strongly Polishable class.

Implications between the classes considered

Induced classes

Let $\mathcal C$ be a class of metrizable compacta. We consider the following classes of metrizable compacta induced by members of $\mathcal C$:

- lacktriangle the class of all subspaces \mathcal{C}^{\downarrow}
- lacktriangle the class of all superspaces \mathcal{C}^{\uparrow}
- the class of all homeomorphic copies \mathcal{C}^{\cong}
- lacksquare the class of all continuous images $\mathcal{C}^{ woheadrightarrow}$

Proposition

- lacksquare \mathcal{C} compactifiable $\Longrightarrow \mathcal{C}^{\downarrow}$ strongly compactifiable
- $lacktriangledown \mathcal{C}$ Polishable $\Longrightarrow \mathcal{C}^{\downarrow}$ strongly Polishable
- lacksquare $\mathcal C$ strongly compactifiable $\Longrightarrow \mathcal C^\uparrow$ strongly compactifiable
- lacksquare \mathcal{C} strongly Polishable $\Longrightarrow \mathcal{C}^{\uparrow}$ Polishable
- $lacktriangledown \mathcal{C}$ strongly Polishable $\Longrightarrow \mathcal{C}^{ woheadrelthappa}$ Polishable
- \mathcal{C} strongly Polishable, X Polish $\implies \mathcal{C}^{\cong} \cap \mathcal{K}(X)$ analytic

Induced classes

Examples

- Every hereditary class of metrizable compacta with a universal element is strongly compactifiable all compacta, all continua, continua with dimension at most *n*, chainable continua, tree-like continua, dendrites.
- Every class of metrizable compacta closed under continuous images with a common model is Polishable – Peano continua, weakly chainable continua.
- The class of all uncountable compacta is strongly compactifiable.
- Classes coanalytically complete in $\mathcal{K}([0,1]^\omega)$ are not strongly Polishable hereditarily decomposable continua, dendroids, λ -dendroids, arcwise connected continua, uniquely arcwise connected continua, hereditarily locally connected continua.

Construction

Let $T \subseteq \omega^{<\omega}$ be a tree and let \mathcal{D} be an inverse system of a shape T, i.e. for every $t \in T$ let X_t be a topological space and for every $t \, \hat{} \, k \in T$ let $f_{t,k} \colon X_{t'k} \to X_t$ be a continuous map.

- Let T_n denote the n-th level of T and let $[T] \subseteq \omega^{\omega}$ denote the space of all infinite branches of T.
- For every $\alpha \in [T]$ let \mathcal{D}_{α} be the inverse sequence

$$\mathcal{D} \upharpoonright \alpha = (X_{\alpha \upharpoonright n}, f_{\alpha \upharpoonright n, \alpha(n)})_{n \in \omega}.$$

Let \mathcal{D}^{\oplus} be the inverse sequence

$$\left(\sum_{t\in T_n} X_t, \sum_{t\in T_n} (\nabla_{t\hat{k}\in T} f_{t,k})\right)_{n\in\omega}.$$

■ For every $\alpha \in [T]$ let $\eta_{\alpha} : \mathcal{D}_{\alpha} \hookrightarrow \mathcal{D}^{\oplus}$ be the transformation $(X_{\alpha \upharpoonright n} \hookrightarrow \sum_{t \in T_{-}} X_{t})_{n \in \omega}.$

We obtain the composition $\mathcal{A}_{\mathcal{D}} := (\varprojlim \mathcal{D}^{\oplus}, \varprojlim \eta_{\alpha})_{\alpha \in [T]}$ of the family $\{\varprojlim \mathcal{D}_{\alpha}\}_{\alpha \in [T]}$.

Construction

... the composition $\mathcal{A}_{\mathcal{D}} = (\varprojlim \mathcal{D}^{\oplus}, \varprojlim \eta_{\alpha})_{\alpha \in [T]}$ of $\{\varprojlim \mathcal{D}_{\alpha}\}_{\alpha \in [T]}$.

Observation

- \blacksquare [T] is a closed subset of the Polish space ω^{ω} , and it is compact if T is finitely splitting.
- A_D is a Polish composition if all spaces X_t are Polish.
- A_D is a compact composition if all spaces X_t are metrizable compacta and the tree T is finitely splitting.

A topological space is

- (weakly) \mathcal{P} -like if it is an inverse limit of a sequence with spaces from \mathcal{P} and continuous bonding maps that are (not necessarily) onto.
- \mathcal{F} -like if it is an inverse limit of a sequence with maps from \mathcal{F} .

Proposition

Let $\mathcal F$ be a countable family of continuous maps and let $\mathcal C$ be the class of all $\mathcal F$ -like spaces.

- **1** There exists an inverse system \mathcal{D} of a shape $T \subseteq \omega^{\omega}$ such that $\{\mathcal{D}_{\alpha}\}_{\alpha \in [T]} \cong \mathcal{C}$, so if the (co)domains of \mathcal{F} are Polish, then \mathcal{C} is Polishable.
- 2 If $\mathrm{id}_X \in \mathcal{F}$ for every X that is a codomain of infinitely many maps from \mathcal{F} , then we may get a finitely splitting \mathcal{T} . So if the (co)domains of \mathcal{F} are metrizable compacta, then \mathcal{C} is compactifiable.

Proposition

Let $\mathcal G$ be a family of continuous maps such that the (co)domains of $\mathcal G$ form a countable set of metrizable compacta. There exists countable $\mathcal F\subseteq \mathcal G$ such that every space is $\mathcal F$ -like iff it is $\mathcal G$ -like.

Theorem

For every countable family of metrizable compacta ${\cal P}$ the classes of all (weakly) ${\cal P}$ -like spaces are compactifiable.

Example

- The classes of all arc-like and all circle-like continua are compactifiable.
- The whole construction stems from the construction of a universal arc-like continuum [12.22, Nadler].
- There is no universal circle-like continuum.

Problems

Questions

- Is there a compactifiable class that is not strongly compactifiable?
- Are strongly compactifiable classes closed under countable unions?
- Is there a Polishable class that is not compactifiable?
- Is the class of all Peano continua compactifiable?

Thank you for your attention.

