The 2-Rothberger Game and a Generalization

Nathaniel Hiers

Work with Logan Crone, Lior Fishman, and Stephen Jackson

University of North Texas

August 29, 2017

The 2-Rothberger Game

Definition

The game $G_2(\mathcal{O}, \mathcal{O})$ is played as the familiar Rothberger game, except that II picks two elements instead of one.

Theorem

Let X be a T_2 space. Then the games $G_1(\mathcal{O}, \mathcal{O})$ and $G_2(\mathcal{O}, \mathcal{O})$ are equivalent on X.

Proof Outline

Two of the implications we must prove are trivial. If $I \uparrow G_2(\mathcal{O}, \mathcal{O})$, then $I \uparrow G_1(\mathcal{O}, \mathcal{O})$, and if $II \uparrow G_1(\mathcal{O}, \mathcal{O})$, then $II \uparrow G_2(\mathcal{O}, \mathcal{O})$.

Since we know that X is $S_1(\mathcal{O}, \mathcal{O})$ if and only if $I \not\supset G_1(\mathcal{O}, \mathcal{O})$ and that $S_1(\mathcal{O}, \mathcal{O})$ is equivalent to $S_k(\mathcal{O}, \mathcal{O})$ for $k \in \omega$, it is not difficult to prove the third:

 $I \uparrow G_1(\mathcal{O}, \mathcal{O}) \Rightarrow X \text{ is not } S_1(\mathcal{O}, \mathcal{O}) \Rightarrow X \text{ is not } S_2(\mathcal{O}, \mathcal{O}).$

So if $I \uparrow G_1(\mathcal{O}, \mathcal{O})$, then I can simply play a sequence of open covers that witness the fact that X is not $S_2(\mathcal{O}, \mathcal{O})$ in order to win $G_2(\mathcal{O}, \mathcal{O})$.

So we need only show that $II \uparrow G_2(\mathcal{O}, \mathcal{O}) \Rightarrow II \uparrow G_1(\mathcal{O}, \mathcal{O}).$

$(\mathsf{II}\uparrow {\sf G}_2({\cal O},{\cal O})\Rightarrow \mathsf{II}\uparrow {\sf G}_1({\cal O},{\cal O}))-\mathsf{Setup}$

Let τ be a winning strategy for II in $G_2(\mathcal{O}, \mathcal{O})$. Let $g : \mathcal{O} \times X \to \mathcal{T}(X)$ be defined such that $x \in g(\mathcal{U}, x) \in \mathcal{U}$. Where A is an infinite subset of ω , let $f(A) = \{\min(A), \min(A \setminus \min(A))\}$. Let $A_{\varnothing} = \omega$. For $s \in \omega^{<\omega}$, where A_s has been defined, let $(A_{s \frown i})_{i \in \omega}$ be a partition of $A_s \setminus f(A_s)$ such that when $2k \in A_{s \frown i}, 2k + 1 \in A_{s \frown i}$. For $n \in \omega$, let $\phi(n) = s \Leftrightarrow n \in f(A_s)$.

$(\mathsf{II}\uparrow \mathsf{G}_2(\mathcal{O},\mathcal{O})\Rightarrow \mathsf{II}\uparrow \mathsf{G}_1(\mathcal{O},\mathcal{O}))$ – Kickoff

Let $t_{<>}$ be the empty play of G_2 .

Let $C_{t_{<>}} = \{x \in X : \forall \text{ open cover } \mathcal{U} \text{ of } X, x \in \overline{\bigcup \tau(t_{<>} \frown \mathcal{U})}\}$ $= \{x \in X : \forall \text{ open cover } \mathcal{U} \text{ of } X, x \in \overline{\bigcup \tau(\mathcal{U})}\}.$ We know that such a set has at most two elements. If $|C_{t_{<>}}| = 2$, let $x_0^{<>}$ and $x_1^{<>}$ be its distinct elements. If $|C_{t_{<>}}| = 1$, let $x_0^{<>} = x_1^{<>}$ be its lone element. If $C_{t_{<>}} = \emptyset$, let $x_0^{<>}$ and $x_1^{<>}$ be arbitrary elements of X. When I begins a play of $G_1(\mathcal{O}, \mathcal{O})$ with an open cover \mathcal{U}_0 of X, let $\tau'(\mathcal{U}_0) = g(\mathcal{U}_0, x_0^{<>}).$ When I plays \mathcal{U}_1 next in $G_1(\mathcal{O}, \mathcal{O})$, set $\tau'(\mathcal{U}_0, \tau'(\mathcal{U}_0), \mathcal{U}_1) = g(\mathcal{U}_1, x_1^{<>}).$

Suppose that we have a partial play $t = \{\mathcal{U}_0, \tau'(\mathcal{U}_0), \mathcal{U}_1, \tau'(\mathcal{U}_0, \tau'(\mathcal{U}_0), \mathcal{U}_1)\}.$ Let $W_{\emptyset}(t) = g(\mathcal{U}_0, x_0^{<>}) \cup g(\mathcal{U}_1, x_1^{<>})$ (the union of the last two moves by II in t). Let $Y_{\varnothing}(t) = X \setminus W_{\varnothing}(t)$. Note that 1) X is Lindelöf and Y is a closed subset of X, so Y is also Lindelöf, and 2) $Y_{\varnothing}(t) \subset X \setminus C_{t_{\varnothing}}$. The collection $\{X \setminus \overline{\bigcup \tau}(\mathcal{U}) : \mathcal{U} \in \mathcal{O}\}$ is an open cover of $Y_{\emptyset}(t)$. Since $Y_{\emptyset}(t)$ is Lindelöf, there is a countable subcollection $Q_{\emptyset}(t)$ that covers $Y_{\emptyset}(t)$. So, for each $i \in \omega$, let $\mathcal{V}_{(i)}(t)$ be an open cover of X such that $\mathcal{Q}_{\varnothing}(t) = \{X \setminus \overline{\bigcup \tau(\mathcal{V}_{(i)}(t))} : i \in \omega\}.$

s =<> Step, Continued

Set $t_{(i)}(t) = t_{\varnothing} \frown \mathcal{V}_{(i)}(t) \frown \tau(t_{\varnothing} \frown \mathcal{V}_{(i)}(t)) = (\mathcal{V}_{(i)}(t), \tau(\mathcal{V}_{(i)}(t))$, and set $C_{(i)}(t) = \{x \in X \text{ :for each open cover } \mathcal{U} \text{ of } X, x \in \bigcup \tau(t_{(i)} \frown \mathcal{U})\}$. Define $x_0^{(i)}(t)$ and $x_1^{(i)}(t)$ as we did in the initial step. Given a partial play t' extending t of length $m \in f(A_{(i)})$ innings, if I plays an open cover \mathcal{U}_m , set $\tau'(t' \frown \mathcal{U}_m) = g(\mathcal{U}_m, x_j^{(i)}(t))$, where j = 1 if $m = max(f(A_{(i)})$ and j = 0 otherwise.

Moving to the General Step

Suppose *n* is an even natural. For every even m < n, there is a strictly increasing finite sequence $(m_i)_{i \in \omega}$ of even naturals such that

(1)
$$m_0 = 0 < m_1 < ... < m_{k-1} < m_k = m$$
,

(2)
$$\phi(m_{i+1}) \ge \phi(m_i)$$
, and

(3)
$$|\phi(m_{i+1})| = |\phi(m_i)| + 1.$$

Suppose t is a partial play of G_1 with an even number n of innings, such that t has the form

$$t = \{\mathcal{U}_0, \tau'(\mathcal{U}_0), ..., \mathcal{U}_{n-1}, \tau'(t \upharpoonright_{n-1} \frown \mathcal{U}_{n-1})\}.$$

For each $i \in \{1, ..., k\}$, we will define $W_{\phi(m_i)}(t \upharpoonright_{m_i+1})$, $Y_{\phi(m_i)}(t \upharpoonright_{m_i+1})$,
and so on in a similar way to what we did in the $s = <>$ step. Note that
 $Y_{\phi(m_i)}(t \upharpoonright_{m_i+1})$ will exclude all $W_{\phi(m_j)}(t \upharpoonright_{m_i+1})$ for $j \leq i$, not just the last
one.

The General Step, Continued

Given a play t' of length $l = min(f(A_{\phi(m)\frown i}))$ that extends t, if I plays an open cover \mathcal{U}_l next, set $\tau'(t' \frown \mathcal{U}_l) = g(\mathcal{U}_l, x_0^{\phi(m)\frown i})$, and when an open cover \mathcal{U}_{l+1} is played in the following inning, set $\tau'(t' \frown \mathcal{U}_l \frown \tau'(t' \frown \mathcal{U}_l) \frown \mathcal{U}_{l+1}) = g(\mathcal{U}_{l+1}, x_1^{\phi(m)\frown i})$.

- Suppose that some point $x \in X$ is left uncovered by II in a play t in which he follows τ' .
- Consider a partial play t_s of G_2 that corresponds to some subplay of t
- where x has not been covered yet (we can simply take t_s to be t_{\emptyset}).
- x is in the corresponding Y_s , which is covered by Q_s , so there exists $i \in \omega$ such that $x \in X \setminus \overline{\bigcup \tau(t_s \frown \mathcal{V}_{s \frown i})}$.
- Choose such an *i*, and note that $t_{s \frown i}$ is an extension of t_s such that x has still not been covered.
- Continuing in this way, we build a play of G_2 in which II follows τ yet loses a contradiction.

Monotone and Coordinatewise Monotone Properties

Here, \mathcal{P} will be a property that a sequence of open sets can have, such as "is an open cover" or "covers a dense subset of X".

1) Suppose \mathcal{P} is such that whenever $(U_n)_{n\in\omega}$ satisfies \mathcal{P} and $(V_n)_{n\in\omega}$ is a sequence such that for each $n \in \omega$, there is $m \in \omega$ such that $U_n \subseteq V_m$, then $(V_n)_{n\in\omega}$ also satisfies \mathcal{P} . We will call such a property "monotone". 2) Suppose \mathcal{P} is such that whenever $(U_n)_{n\in\omega}$ satisfies \mathcal{P} and $(V_n)_{n\in\omega}$ is a sequence such that for each $n \in \omega$, $U_n \subseteq V_m$, then $(V_n)_{n\in\omega}$ also satisfies \mathcal{P} . We will call such a property "coordinatewise monotone".

A property that is monotone will also be coordinatewise monotone. The property "is a γ -cover" is coordinatewise monotone but not monotone.

Rothberger and Point-Open Games with ${\mathcal P}$

Theorem

(i) $G_1(\mathcal{O}, \mathcal{P})$ is dual to the $\mathcal{P} - POG$. (ii) If \mathcal{P} is coordinatewise monotone and X is a compact T_2 space, then $G_2(\mathcal{O}, \mathcal{P})$ is dual to the $\mathcal{P} - 2 - POG$.

(i) follows from a proof similar to Galvin's for the original games. Tkachuk noted this for a specific property – that of covering a dense subset of X.

$(\mathsf{II}\uparrow G_2(\mathcal{O},\mathcal{P})\Rightarrow \mathsf{I}\uparrow \mathcal{P}-2-\mathsf{POG})$

Lemma

Suppose that X is a topological space and f is a function on the collection \mathcal{O} such that $f(\mathcal{U})$ is an ordered pair (G_1, G_2) of elements of \mathcal{U} . If X is a compact T_2 space, then there exist $x_0, y_0 \in X$ such that for any open neighborhoods $U \ni x_0, V \ni y_0$ and for any open cover \mathcal{U} of X, there is an open cover \mathcal{V} of X such that \mathcal{V} refines $\mathcal{U}, [f(\mathcal{V})]_0 \subseteq U$, and $[f(\mathcal{V})]_1 \subseteq U$.

When II has a winning strategy τ in $G_2(\mathcal{O}, \mathcal{P})$, we can form a winning strategy for I in $\mathcal{P} - 2 - POG$ by

*playing two such points (x_n, y_n) in each inning of the $\mathcal{P} - 2 - POG$, *considering the neighborhoods (U_n, V_n) in II's response, then *playing an open cover \mathcal{U}_n in an ongoing play of $G_2(\mathcal{O}, \mathcal{P})$ where II follows his winning strategy, such that \mathcal{U}_n refines the previous move (for $n \neq 0$) and each part of the response by τ is contained in \mathcal{U}_n or V_n as applicable. Showing that $(II \uparrow \mathcal{P} - 2 - POG \Rightarrow I \uparrow G_2(\mathcal{O}, \mathcal{P}))$ is nontrivial, but not especially interesting.

The remaining two implications follow from typical game arguments.

The End

Questions? Comments? Complaints?